No, you don’t understand what it’s like to be a man. The case for inquiry in our schools…

Time to read: 2 minutes

In one way it is great to see the focus on post-truth at the moment, but laying the blame at facebook and journalism is wrong, it is not their fault, it is the fault of instructionist teaching approaches. Instructionist teaching approaches are the ones that produce narrow views based solely on the entrenched, usually white, middle-class, and male, views. They teach that knowledge is unchanging and unchallengeable. They teach that perspective doesn’t matter.

Inquiry approaches, however, teach the opposite.

In Situating Constructionism, Seymour Papert makes two arguments for constructionism, his flavour of student directed inquiry learning:

1) “The weak claim is that it suits some people better than other modes of learning currently being used.”

2) “The strong claim is that it is better for everyone.”

Starting with Papert’s asserted stronger claim, why does he believe that inquiry approaches are better for everyone? Papert, correctly understands, that different learning approaches view learning through from different perspectives, and that these vastly different perspectives result in vastly different outcomes, for the student as an individual, and as society as a whole. To reinforce, why this stronger claim was indeed so strong, Papert referenced the hope of feminism and Africanism. In his talk, “Perestroika and Epistemological Politics” [this is a must read] which was presented in Sydney in 1990, Papert explains this further when he claims that instruction cannot ever combat racism, discrimination, misogyny, and other ills of society. Rather, instructionist approaches reinforce what we have good or bad.

As such, Parpert argues that constuctionism is better for everyone because it is likely to bring about justice and equity. While instruction reinforces inequality, inquiry challenges it. In our technology amplified post-truth world, our prejudices and beliefs are never challenged, our erroneous beliefs are constantly reinforced from friends and others who hold similar beliefs and perspectives. Papert argued that this was also true in 1990, before the Internet, Facebook and Twitter.  Papert though, did not believe that truth (as opposed to post-truth) could change society, why, because it never had. Instead, Papert believed that the only way real change could happen is by using new ways of thinking. New ways of thinking based on inquiry approaches to learning, knowledge, and understanding.  For instance, Papert believed feminist pedagogy and feminist ways of thinking were the only ways to challenge and overcome sexism and misogyny. Similarly, Papert believed the only way to overcome racism and apartheid (remember Papert was speaking as a South African in 1990) was to adopt Africanist ways of thinking.


Turning to Papert’s weak argument, who are the people that constructionism suits better? Of course, that’s clear from the stronger argument, constructionism suits the disadvantaged and the discriminated. The inference of the weaker argument is that instruction does suit some people well. Some people benefit from the sexist elements of our society, such as being more likely to be paid more, and promoted more often. Some people benefit from racism. Some people benefit from alternative facts. Some people benefit from denying climate change…

And, some people benefit from instruction.  Yet, Papert would argue that all of the people who benefit from instruction, would benefit from inquiry approaches to learning even more. Yes, even those who now benefit from direct instruction, would derive greater benefits from inquiry approaches.

Whether we are concerned with the world’s move towards the right, or any other of the ills of society, I’m siding with Papert, rather than trying to rewind the post-truth world, we need to embrace new (inquiry-based) ways of thinking. All other solutions have never, ever worked.

As for the title of this post, yes I’m using it ironically, just as it’s used in this wonderful pop song…

How is learning to speak different from learning to read and write?

Time to read: 6 minutes

It appears de rigueur at the moment to make bold proclamations, usually based on flimsy evidence, about what students need to know, in order to learn this or that. For example, people pushing phonics make claims about the essential knowledge readers need to have about reading. Proponents of direct instruction make claims about the incompatibility of using play or inquiry to learn specific scientific concepts of mathematics, while others outline the non-negotiable knowledge that student writers apparently need to know in order to write.

Recently, I’ve encountered people trying to justify their beliefs in specific essential learning by citing “biological primary and secondary knowledge,” ignoring that fact that Vygotsky, Piaget, and others have differentiated spontaneous and non-spontaneous concepts for eighty years! Though it is disappointing that these academics don’t refer to those who came before them, I feel that this is great opportunity to have discussions about what, when, and how people form scientific concepts. This is the subject of this post.

Vygotsky outlines the differences between spontaneously developed and non-spontaneously developed concepts in Thinking and Speech Chapter 6 The Development of Scientific Concepts in Childhood. He also describes Piaget’s position, and the differences between the two. It is a fairly heavy read, but worthwhile, and I will use examples from this chapter in this post. [Note: The Russian word obuchenie has been poorly translated as “instruction” in English translations of Vygotsky’s writings, instead according to Moll 1992 substitute “teaching/learning” or Wertsch 1988 “teaching-learning processes” whenever “instruction” is used.]

There is general agreement that there are two types of concepts, spontaneous and non-spontaneous, which are often more commonly referred to as everyday and scientific concepts. In this post, I will attempt to outline my understanding of Vygotsky’s position using his examples, from the position of cultural-historical theory.

Even the most devout direct instructionists admit that everyone learns to talk spontaneously. That is, young children form concepts of oral language spontaneously through their everyday interactions with their parents and others, all the way to becoming fluent speakers. Yes, there are many scientific concepts that form our understanding of language. For example, through the study of language we form scientific concepts around the construction of words certain prefixes and suffixes, which provides us the ability to understand unfamiliar words. However, no one that I’ve encountered has yet to claim that specific scientific concepts need to be explicitly taught, and known by children, before they can learn to talk.

Vygotsky uses the contrasting examples of brothers and Archimedes principle, to illustrate the differences between everyday and scientific concepts. We form the concept of a brother through many and varied experiences of brothers through interactions with them. Compare our understanding of a brother with the scientific definition of brother, obtained from the google, a brother is “a man or boy in relation to other sons and daughters of his parents.”  Further, compare this with Archimedes principle from wikipedia “Archimedes’ principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially submerged, is equal to the weight of the fluid that the body displaces and acts in the upward direction at the center of mass of the displaced fluid.”

We can see clearly, and Vygotsky explains as such, that everyday concepts and scientific concepts have opposite strengths. A child’s understanding of what a brother is rich in real-life experiences with brothers, yet they most likely have difficulties defining what a brother is in precise terms, something  Wikipedia also has difficulty with! However, a student’s understanding of Archimedes principle is rich in the abstract. They can learn such scientific definitions by heart and apply them to problems and relate them to other scientific concepts. Yet the weakness of scientific understanding is the ability to associate it with real objects. By simply knowing the principle can they use it to explain what happens to a ship being unloaded at the dock, a helium filled balloon, or a person floating?  Initially, probably not.

Scientific concepts and everyday concepts coexist, they don’t replace each other. Studying the literature featuring sibling rivalry doesn’t replace our everyday concepts of a brother, rather the everyday and scientific concepts connect to enable, as Vygotsky says, the “mastery of the higher characteristics of the everyday concept.”

Another example. I’m currently teaching my oldest child to drive. Cornering speed, understanding the speed in which the car can navigate a corner safely, is extremely complex and difficult to master. Different corner shapes, different road and weather conditions, the width of the road, and the speed zone, all play a part, and largely can only be learned through experience of different corners in different conditions. Some corners taken to cautiously, some taken to fast, and some taken just right. For a beginning driver, actually for any driver, feeling safe is a good indication of whether the speed is suitable, but I’ve suggested to my daughter that if she needs to break in the second half of the corner then she’s travelling too fast. By using this clearly defined scientific concept, she can assess whether she chose the right speed for a corner, and modify her driving in the corner.

Of course, this scientific concept of not needing to break in the second half of the corner, coexists with the everyday concepts developed spontaneously during the thousands of corners she’ll navigate during her 120 hours of learner practice, as required here in Victoria. There is, however, a limit to the scientific concept of slow in, fast out cornering. It would be ludicrous and negligent by me, as her driving instructor, to simply teach her the scientific concept, without the everyday experiences of cornering, as both a passenger and a driver. Without the opportunity to form concepts about driving spontaneously, there isn’t the necessary developmental foundation for the scientific concept to form, and my rule of thumb would be just meaningless words. Again, as Vygotsky says, the scientific concept allows the higher aspects of everyday concepts to emerge.

Some will argue that some things can only be learned scientifically first due to their nature.

Vygotsky points out that the way we learn to speak a second language does not occur the same spontaneous way. When we learn a second language we learn it scientifically first, and everyday second. I’ve already discussed that everyone accepts we learn to speak spontaneously, this is not true of how we learn a second language. In fact, Vygotsky shows, we learn it completely opposite to our first language. In our first language, we can communicate with others right from the beginning, yet we don’t understand grammar and the like. In second languages, we learn the rules of grammar first, and can only communicate with others, and develop spontaneous concepts through oral interactions, is a long way down the learning path.

This is because we learn the scientific concepts of a second language in the context of the everyday concepts of our first language. Scientific concepts of a second language still come after everyday concepts, but they are the everyday concepts of our first language.

Naturally some will argue that reading, writing, mathematics, music, and everything else is closer to learning to speak a second language, than learning to speak a first language. They’ll argue that their subject can’t be learned spontaneously, it needs to be learned scientifically. This is not true. Papert for example, showed how students learn mathematics spontaneously.

Sadly, we’re beginning to see this approach in the teaching reading and writing becoming more widespread. The inability of students to use a phonetical approach to read their own writing demonstrates the flaw in thinking. I’ve seen first hand how the scientific concepts students used to write words on paper, doesn’t enable them to read their own words back. They struggle to use the scientific concepts to write, and then they find it impossible to use the scientific concepts to read their own writing. This is in contrast to much younger students who scrawl a mix of letters, lines and symbols on paper, and read them back clearly and confidently.

Without the opportunity to spontaneously form concepts of writing, through their own form of writing to communicate their ideas, they don’t have the basis to form the scientific concepts. Like a student driver who has never been in a car before, and yet who finds themselves heading towards a corner they don’t have the slightest clue whether to hit the accelerator or the brake! It is not the lack of the scientific concept that is the issue, it is the lack of everyday concepts to give the scientific concept meaning.

The ever bigger danger of the scientific concept first approach, is that the scientific concepts we’re teaching our students might not actually be scientific concepts. Without spontaneously developed everyday concepts it is impossible to tell whether promoted scientific concepts are in fact pseudo concepts. Whether or not the slow in, fast out concept is actually a scientific concept can be ascertained through the everyday concepts already formed, but without those everyday concepts we’re lost.

In this way, for scientific concepts not only need a broad range of everyday concepts to be formed but they also need a broad range of everyday concepts so that they can be adequately understood. As such, teaching the scientific concept of phonetic awareness through non-words appears a particularly futile approach, as it severs the relationship between the scientific concept (phonetic awareness) and the everyday concepts (known words). Rather, strengthening a student’s understanding of scientific concepts of reading and writing, first requires a strengthening and expanding of their experience of everyday concepts.



It is often asked whether teachers need to know learning theory, or whether they just need to know good practice and what works. It is a legitimate question. I do believe an understanding of everyday and scientific concepts show that they two, everyday practice and theory, are not only related but they are dependent upon each other. A strong understanding of pedagogy reveals the “higher characteristics” of teaching, while a strong understanding of pedagogy is dependent on a broad range of spontaneously formed concepts during actual learning and teaching.


Confessions of a failed edtech entrepreneur

A while ago I reflected on being a stay at home dad. Now that I’ve been back teaching for six months, I think the time is right to reflect on another interpretation of my last four years, that of a failed edtech entrepreneur.

The closing of ideasLAB due to the restructure of the Victorian Education Department was extremely disappointing. Sadly, it is hard to imagine that working for Bruce Dixon for four years, will be topped in my professional life. ideasLAB was formed in 2009, when the ideas of the lean startup were just starting to gain traction. We tried to use some of these ideas at the lab, in order to be more likely to make decisions that offered real value for schools. My voluntary departure payout, which included an undertaking not to work in a government school for twelve months, gave me an opportunity to pursue the entrepreneurial dream. A dream, I ended up pursuing for four years.

Unlike most educators and academics I don’t have scorn for edutech companies. Though, their frequent media releases announcing their plans to “save education” do get old.  Rather, I believe that (unfortunately) education entrepreneurs are our best hope for improving pedagogy. In our current climate of data and performativity, school leaders seem unwilling or unable to try alternative learning and teaching approaches. This is despite the clear failings of current mainstream teaching and learning approaches. External companies, and consultants, appear to offer alternative paths, where school leaders can implement new approaches in their schools without putting their own neck on the line.

To understand the current entrepreneur, and their education startups, you need to understand the lean startup methodology. Lean startup, which has its roots in lean production and agile software development, was conceived and popularised by Eric Ries in 2008. Essentially, lean startup believes that startups are businesses looking for a viable business model. It assumes that an entrepreneur’s assumptions about their product and customers are wrong, and that they will most likely need to be radically changed before a viable business model is discovered. These beliefs, along with their tools and processes, are well established in software development, making a receptive environment for lean startup beliefs, tools and processes. Over the last ten years, lean startup has become the dominate entrepreneurship approach from startups to academia to multinationals.

What makes lean startup a fantastic approach, is that it assumes that the chosen approach is most likely flawed. The lean startup assumes that the entrepreneurs understanding is incomplete, that their assumptions are wrong, and they technologies change the business environment. It allows entrepreneurs to make good decisions in environments of extreme uncertainty and constant change. A lack of time and money is the enemy of the startup and lean startup provides a proven methodology to counter these.

Unfortunately, lean startup has problems. Major problems. When success is defined solely in dollars and cents, problems occur. Uber and AirBnB, and the rise of the sharing economy, are classic cases of this. Despite the rhetoric, the only metrics edtech entrepreneurs have or care about is sales. Not that sales are necessarily a bad thing but when they become the sole focus educational worth becomes lip service. Education startups, using the lean startup approach, won’t build their product until someone will buy it. Education startups cold call schools to sell a product that doesn’t exist. While this is great for product-market fit it doesn’t have anything relevance for understanding whether their product will actually improve student learning or work as claimed.

Despite slogans about improving education and learning, education startups don’t have metrics for this. The only measure of success they have is whether someone is willing to buy their product, and how far their product is towards hockey stick growth. Edtech startups, using lean startup, have resulted in a race to the bottom. They prey on the fears of school leaders. They make outlandish claims about improving learning when in reality they usually push outdated behaviourism, and over collect student data.

For lean startup to have a place in education, it needs to tackle the questions 1) what’s worth doing, and 2) what works. This should be easy as lean startup adherents know that it is most likely that what they believe is wrong. Yet, currently, edutech companies don’t believe, or want to believe, that what they are offering might not be good for students.

Until that day, most if not all edutech startups are just wasting everyone’s time.


And, my confessions:

I never found product-market fit.

I built a solution that no one wanted.

I continue to believe, that my idea still might work.

Even though, deep down, I know I’m wrong.